Exercise 37

A force of 6 N makes an angle of $\pi / 4$ radian with the y axis, pointing to the right. The force acts against the movement of an object along the straight line connecting $(1,2)$ to $(5,4)$.
(a) Find a formula for the force vector \mathbf{F}.
(b) Find the angle θ between the displacement direction $\mathbf{D}=(5-1) \mathbf{i}+(4-2) \mathbf{j}$ and the force direction \mathbf{F}.
(c) The work done is $\mathbf{F} \cdot \mathbf{D}$, or, equivalently, $\|\mathbf{F}\| \cdot\|\mathbf{D}\| \cos \theta$. Compute the work from both formulas and compare.

Solution

Part (a)

From the figure,

$$
\begin{aligned}
& \cos 45^{\circ}=\frac{y}{6} \quad \rightarrow \quad y=6 \cos 45^{\circ}=3 \sqrt{2} \mathrm{~N} \\
& \sin 45^{\circ}=\frac{x}{6} \quad \rightarrow \quad x=6 \sin 45^{\circ}=3 \sqrt{2} \mathrm{~N},
\end{aligned}
$$

so the 6 N force is decomposed as shown below.

Since both components of the force point in the positive x - and y-directions, no minus signs are needed.

$$
\mathbf{F}=(3 \sqrt{2}, 3 \sqrt{2}) \mathrm{N}=3 \sqrt{2}(1,1) \mathrm{N}
$$

Part (b)

Take the dot product of $\mathbf{F}=(3 \sqrt{2}, 3 \sqrt{2})$ and $\mathbf{D}=(4,2)$. Let θ be the angle between them.

$$
\mathbf{F} \cdot \mathbf{D}=\|\mathbf{F}\|\|\mathbf{D}\| \cos \theta
$$

Solve for $\cos \theta$.

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{F} \cdot \mathbf{D}}{\|\mathbf{F}\|\|\mathbf{D}\|} \\
& =\frac{(3 \sqrt{2}, 3 \sqrt{2}) \cdot(4,2)}{\sqrt{(3 \sqrt{2})^{2}+(3 \sqrt{2})^{2}} \sqrt{4^{2}+2^{2}}} \\
& =\frac{12 \sqrt{2}+6 \sqrt{2}}{\sqrt{36} \sqrt{20}} \\
& =\frac{3}{\sqrt{10}}
\end{aligned}
$$

Therefore, the angle between the force and displacement vectors is

$$
\theta=\cos ^{-1}\left(\frac{3}{\sqrt{10}}\right) \approx 18.4^{\circ}
$$

Part (c)
The work done by the force \mathbf{F} in moving the object from $(1,2)$ to $(5,4)$ is

$$
\begin{aligned}
W=\mathbf{F} \cdot \mathbf{D}=(3 \sqrt{2}, 3 \sqrt{2}) \cdot(4,2)=12 \sqrt{2}+6 \sqrt{2} & =18 \sqrt{2} \mathrm{~N} \cdot(\text { unit of distance }) \\
& \approx 25.5 \mathrm{~N} \cdot(\text { unit of distance }) .
\end{aligned}
$$

